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Abstract—The rapid development of deep learning architec-
tures that have a good performance on object detection in
visual monocular images has triggered and interest towards the
application of these architectures on other image modalities such
as stereovision or infrared images.

We propose a framework for multi-class object detection
in monocular infrared images that integrates and compares
different classification-regression deep learning architectures [1]
on a novel benchmark infrared dataset developed by FLIR.

The work described is evaluated using standard object detec-
tion metrics and an average precision of 82% for pedestrians,
86% for cars and 66% for bicycles is achieved while running at
40fps.

I. INTRODUCTION

The detection of objects in infrared scenes is of particular
interest because infrared sensors can see where visible sensors
don’t: for example at night, in low visibility situations such
as heavy rain, snow, fog, dust. The appearance of objects
in infrared images is quite complex due to phenomena like
heat diffusion that makes the borders of the object blurry or
occlusions of cold / warm objects by others.

There are many solutions that perform object detection in
the visible domain using either classical machine learning
algorithms and, lately most of them explore deep learning
architectures [2]. In order to encourage the scientific work
in deep learning for infrared images, FLIR introduced a
benchmark dataset that contains annotations for pedestrians,
cars, bicycles and dogs [3]. Another interest dataset is [4]
that has annotations for pedestrians in well aligned visible
and infrared images. In recent years this dataset [4] has been
largely explored for pedestrian detection in infrared images
and for fusion of infrared and visible pedestrian detectors.

Our work is focused on the detection of multiple objects
from monocular infrared images and as far as we know until
now there are only a few relevant contributions in this field
[3]. The original aspects of the proposed method reside in:

o The fine tuning of two deep convolutional neural network
architectures to perform multi-class object detection in
infrared images.

o The study and comparison of the performance of these
networks on different objects (cars, bicycles, pedestrians).
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Fig. 1. Results of the proposed method

o A generic framework for multi-class object detection for
infrared images.
In order to have a reliable solution and accurate results the
environment temperature should be lower than the temperature
of the human body. The proposed system has good results for
night scenes and also for day scenes achieving a high accuracy
for pedestrians and cars as shown in Figure 1.

The rest of the paper is structured as follows: in section
IT we present other existing approaches in the field. Section
III describes the proposed framework including the network
architectures with the fine tuning of parameters. The dataset
used for evaluation, the parameters of the training procedure,
the detailed accuracy results and the precision-recall curves
are described in section IV. Section V concludes the paper
and shows the main ideas and future development directions.

II. RELATED WORK

The rapid development in deep learning provides powerful
learning architectures that are able to generate high-level deep
features relevant for semantic segmentation or object detection.
In what follows we revise the most important deep learning
architectures with good results in the visible domain and we
summarize the main approaches for pedestrian detection in
infrared and visible images.

A. Deep learning object detection architectures for the visible
domain

The problem of object detection has been studied ex-
tensively in the field of deep learning. One of the first



successful architectures for object detection is Region-based
Convolutional Network (R-CNN) proposed by Girshick. et.
al. [5] where the authors have used a region proposal module
to generate bounding boxes proposals, a CNN that extracts
features for each proposal and an SVM classifier that classifies
each proposal using the computed features. An improved
version of R-CNN called Fast R-CNN was proposed by R.
Girshick [6] where features are initially computed for the
whole image using a CNN and a Region of Interest Pooling
(ROIPooling) layer is used to extract features for candidate
regions.

In [7], an improved version of Fast R-CNN called Faster
R-CNN was proposed. In Faster R-CNN, a Region Proposal
Network (RPN) was introduced to eliminate the costly region
proposal algorithm used by R-CNN and Fast R-CNN. The
RPN is composed of a CNN that produces a feature map and
a smaller network that is used in a sliding window fashion
over the computed feature map. The smaller network produces
an objectness score for a set of pre-defined bounding boxes,
called anchors. The smaller network also produces a set of
offsets for the anchors in order to refine the detections. A
ROI pooling layer and a classifier is then used to classify the
boxes proposed by the RPN and refine the boxes further.

Lin et. al. [8] introduces the Feature Pyramid Network
(FPN) that is similar to Faster R-CNN but detects objects
at multiple scales. The network is composed of two path-
ways, a bottom-up pathway and a top-down pathway. During
the bottom-up pathway, feature maps at different scales are
computed. The top-down pathway up-samples coarser features
and combines them with features from the bottom-up pathway
using lateral connections. Different branches of Rol Pooling
followed by fully connected layers are applied on feature maps
of different scales from the top-down pathway in order to
classify and regress bounding boxes.

The introduction of YOLO [9] made real time object detec-
tion using deep learning possible, having a version running at
45 FPS and a faster version running at 150 FPS on a Titan
X GPU. In YOLO, an image is first divided into a grid of
a fixed size. For each cell in the grid, the network predicts
multiple bounding boxes, a probability for an object to be in
a bounding box, as well as class probabilities for each box. In
YOLO, all predictions are done in the same time, as opposed
to ther models like Faster R-CNN where bounding boxes are
first proposed and then classified. YOLOvV2 is an improvement
over the original YOLO architecture, obtaining a higher mean
average precision at a higher speed. Some of the improvements
of YOLOvV2 are the use of Batch Normalization [10] layers
and the use of anchors, similar to Faster R-CNN. The main
problem with YOLO and YOLOV?2 is that they struggle with
small objects. YOLOV3 [1] addresses this by predicting boxes
at 3 different scales. YOLOV3 also replaces softmax with
independent logistic classifier to deal with overlapping labels.

B. Deep learning for infrared and visible pedestrian detection

Infrared object detection has been explored from the per-
spective of pedestrian detection and fusion of visible and

infrared data in order to enhance the accuracy of the results.
A comparison of different convolutional network fusion ar-
chitectures is employed by [11]. They discover that pedes-
trian detection confidences from color or thermal images are
correlated with the illumination conditions and propose an
illumination-aware Faster R-CNN (IAF R-CNN) that gives an
illumination measure of the input image. They merge color
and thermal sub-networks by a gate function that is defined
over the illumination value.

Two stream deep convolutional neural networks are pro-
posed by [12] that learn multi-spectral human-related fea-
tures under different illumination conditions (daytime and
nighttime). They use the illumination information with multi-
spectral data in order to generate more accurate semantic
segmentation that is used to boost the pedestrian detection
accuracy. The proposed method is trained end to end and
uses a multi-task loss function. The results outperform state
of the art approaches on KAIST multi-spectral pedestrian
dataset. An analysis of existing detection approaches from the
perspective of their generalization ability in the combination
of visual and thermal spectra for person detection is presented
by [13]. The Yolov3 architecture has also been employed
for pedestrian annotation enhancement in thermal images by
[14] that aimed at the acceleration of pedestrian labeling in
far-infrared image sequences. Multi-class object detection in
infrared traffic scenes has not been largely explored due to
the lack of multi-class annotations for infrared images. There
are a few approaches that perform multiclass classification in
video surveillance applications.

A transfer knowledge framework for object recognition of
infrared image is proposed by [15]. The method extracts Hu
moments based on which auxiliary feature data are generated.
and The proposed transfer knowledge approach can transfer
knowledge from the auxiliary data to help the tiny amount
of training data to train a better classifier, which improve the
performance of object recognition.

An experimental study on geometric and appearance fea-
tures for outdoor video surveillance videos is proposed by [16].
They also analyse the classification performance under two
dimensionality reduction techniques (i.e. PCA and Entropy-
Based feature Selection) in the framework of an object clas-
sification system for infrared surveillance videos.

C. Pedestrian detection in the infrared domain

The detection of pedestrians in the infrared domain has
been explored by the scientific community. Due to the lack
of annotated benchmark datasets for the FIR field, only
pedestrians have represented instances of interest for detection
and recognition algorithms. An early approach was proposed
by [17] that describe a multi sensor system consisting of a
far infrared camera, a laser scanning device and ego motion
sensors. To handle the combination of the information of
the different sensors a Kalman filter based data fusion is
used. They analyze the estimated optical flow and the shape
parameters related to the human motion. A fast region of
interest generator combined with fast feature pyramid object



detection is described by [18]. Using the appearance model
of pedestrians in infrared images, edge and intensity based
filters are used to generate regions for pedestrian hypotheses
in order to speed up the detection process. On these regions
the Aggregated Channel Features are computed and pedestrian
detections are inferred. This work is extended by [19] that
combine four channel features, infrared, histogram of gradient
orientations, normalized gradient magnitude and local binary
patterns (uniform, rotation invariant) in order to improve
detection results. A temporally and spatially aligned multi-
sensor system that combines monocular, stereo and infrared
images is proposed by [20] that improve pedestrian detection
the usage of aggregated channel features classifiers trained
on images captured with two types of sensors: far infrared
and stereo-vision sensors. Solutions for infrared pedestrian
detection have also been ported to embedded systems [21]
and use HOG descriptors and different classification methods.
The results are promising and can be a baseline for future
development in embedded solutions.

III. PROPOSED FRAMEWORK

We employ two architectures that have a similar backbone
namely YOLO [1] and YOLO with spatial pyramid pooling
that is partially described by [22]. These architectures have
been chosen due to high accuracy results on visible data and
fast detection time.

Type Filters Size Qutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1

1x| Convolutional 64 3x3
Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3 x 3
Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x| Convolutional 256 3 x3
Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x1

8x| Convolutional 512 3x3
Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1 x1

4x| Convolutional 1024 3 x 3
Residual 8x8
Avgpool Global
Connected 1000
Softmax

Fig. 2. Darknet-53 [1]

In Yolov3 [1] a single neural network is applied to the full
image. The network splits the image into several regions and
for each region predicts bounding boxes which are weighted

Layer ID Repeat  Type Filters Size Output
Input image 640x512
0-74 Darknet-53 1024 20 x 16
75 Conv 512 1x1 20 x 16
76 Conv 1024 3x3 20 x 16
77 Conv 512 1x1 20 x 16
5x5
78 - 83 SPP Module 2048 9x9 20x16
13x13
84 - 87 2x | Conv 512 1x1 20 x 16
Conv 1024 3x3 20 x 16
88 Conv 27 1x1 20 x 16
89 YOLO
90 Route [-4]
91 Conv 256 1x1 20 x 16
92 Upsample 256 2x2 40 x 32
93 Route [-1, 61]
94 - 99 3x | Conv 256 1x1 40 x 32
100 Conv 512 3x3 40 x 32
101 Conv 27 1x1 40 x 32
102 YOLO
103 Route [-4]
104 Conv 128 1x1 40 x 32
105 Upsample 128 2x2 80 x 64
106 Route [-1, 36]
107 - 112 3x | Conv 128 1x1 80 x 64
Conv 256 3x3 80 x 64
113 Conv 27 1x1 80 x 64
114 YOLO
TABLE I

YOLOV3-spP. THE YOLO LAYERS ARE RESPONSIBLE FOR DETECTING
BOUNDING BOXES AND THE ROUTE LAYERS CONCATENATE THE OUTPUTS
FROM LAYERS WITH THE SPECIFIED IDS. DARKNET-53 IS USED UNTIL
THE AVERAGEPOOL LAYER.

by probability scores based on clusters and anchor boxes.
Logistic regression is employed for predicting the objectness
score for each bounding box. Binary cross entropy loss is used
for predicting the classes that a bounding box may contain.
The architecture of the network allows the prediction across
three different scales. K-means clustering applied on the input
training set is used for computing the bounding box priors. The
network uses 53 convolutional layers as described in Figure 2
and detailed in [1].

The second architecture we have employed is based on
YOLO but adds the spatial pyramid pooling blocks and it
is abbreviated Yolov3-spp. The layers of the architecture
with spatial pyramid pooling are shown in Table III. This
architecture provides slightly improved results with respect to
YOLOV3.

In Yolov3-spp according to the scales that represent different
layers of the feature pyramid, spatial pyramid pooling is
responsible for dividing the input feature map into several
bins. Then the maps of the features are pooled by the sliding
windows of which the size is the same as that of the bins.
experiments on several datasets [23] have shown that this
network architecture provides slightly improved results.

Considering these two backbone architectures we develop
a framework for object detection in infrared images. The
pipeline of the proposed framework is described in Figure 3.
In our pipeline we employ the FLIR-ADAS dataset [3].

We customize the annotations in order to respect
YOLO format, that is each bounding box is described by
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Fig. 3. Proposed processing pipeline

class_id, Teenter, Ycenter, Width, height where:

o class_id is the identifier of the class and it is in the range
0... number of classes minus 1.

o Tcenters Yeenter are the coordinates of the center of the
bounding box. They are normalized with respect to the
image width and height.

o width, height are the dimensions of the annotations nor-
malized by the image width and height (width = bb_width
/ image_width, height = bb_height / image_height).

Based on the dimension of the labeled bounding boxes in

the train set anchors are computed by using k-means clus-
tering. Each cluster contains the representative bounding box
dimensions (width, height). Nine clusters are generated. As
described by [24] standard k-means clustering with Euclidean
distance is employed.

IV. EXPERIMENTS AND RESULTS

All our experiments have been done on the FLIR-ADAS
dataset [3] because to the best of our knowledge it is the only
dataset to provide multi-class annotations for infrared images.

A. Dataset configuration

We have used the split into train and test sets as described
by the authors of FLIR-ADAS in order to be able to compare
the results with reported state of the art on this dataset.

Class Train Samples | Test Samples
Person 21924 5779
Car 40711 5432
Bicycle | 3581 471
Dog 226 14
TABLE T

TRAIN AND TEST DATA DISTRIBUTION

The distribution of the data, as shown in Table II shows
that the class dog is represented with only a few samples in
the train and test set and this justifies the low detection rate
that we have obtained. On the other hand the classes Person,
Car and Bicycle are well represented and provide sufficient
number of samples for a robust training procedure.

B. Network training parameters

The parameters of the network for each of the two archi-
tectures is shown in Table III.

Network Batch | Subdivisions | learning rate
Yolov3 64 32 0.001
Yolov3-spp | 16 8 0.001

ABLE IIT
NETWORK PARAMETERS

The anchor values computed from the train dataset are
pairs of width and height for each of the nine clusters. The

following values have been obtained: (15.9367,21.7777),
(39.2190,31.9081), (23.3501,57.3729), (67.5087,52.1448),
(49.4228,115.3734), (107.6429,78.5150), (98.6828,202.4780),
(166.9288,123.8407), (296.4098,169.3415).

C. Results

We have trained both YOLOv3 and YOLOv3-spp for 40000
iterations. Every 1000 iterations we compute the mean average
precision and we pick the weights that provide the highest
mAP. For YoloV3 the network reaches the best mAP after
12000 iterations while for Yolov3-spp the best results are
obtained after 37000 iterations.

We compare our results with the ones reported as state of the
art on the given dataset, namely with RefineDetect512 [25].
Table IV presents the average precision per class, the mean
average precision computed for an IoU of the detection with
respect to the annotation greater than 0.5. The precision-recall

Method Person Car Bicycle | mAP

RefineDetect5120 79.4 85.6 58.0 0.587

YoloV3 78.68% | 84.92% | 66.27% | 0.580

yolov3-spp 82.05% | 85.78% | 66.27% | 0.586
TABLE TV

ACCURACY OF THE PROPOSED FRAMEWORK

curves have been computed for both architectures and for three
classes: pedestrian, car and bicycle using VOC 2007 evaluation
procedure. They are shown in Figures 4a and 4b.

Another metric used for assessing the quality of an object
detector is the log-average-miss rate [26]. We also plot the
miss-rate against the number of false-positives per image
(FPPI). This plot is obtained by varying the threshold on
the detection confidence and compute for each threshold the
miss rate = (false negatives + true positives)/false negatives
and the number of false positives per image. The values are
plotted on logarithmic axes. As described by [26] the log-
average miss rate is computed by averaging the miss rate at
nine FPPI rates that are evenly spaced in the log-space in the
range 1072...10°.

These results show the per-class evaluation. In order to have
a general view of the accuracy we also list the overall true
positive (TP), false positives (FP) and false negatives(FN) for
each network setup:

e Yolov3-spp:

— TP = 8421, FP = 1351, FN = 3275

— average IoU = 65.07 %

e Yolov3:

— TP = 7853, FP = 1393, FN = 3843

— average IoU = 64.08 %
The rate of false positives and false negatives generates the
lower log-average miss rate than the reported average precision
per class.

Discussion: The class Dog has few train / test samples and
the detection score for it is pretty low (below 10%). Probably
the results on this class could be improved if the number of
labeled instances is larger. Due to this class imbalance issue
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Fig. 4. Precision-recall curves

the total mean average precision of the proposed method is
lower with 0.001 that the reported state of the art. But if the
results are analysed per class an improvement with 3% can
be noticed for pedestrians, and with 8% for bicycles while
the accuracy for cars is quite similar with the state of the art
results.

D. Hardware configuration

The described framework has been trained on the system
having the following parameters:

¢ 17 Processor, 16GB memory, 2080Ti GPU.

Using this setup the inference time of the framework is
about 40fps (an average of 25ms per frame).

The training process takes roughly 15 hours to complete
about 40000 iterations for each of the employed network
architecture.

E. Sample detection results

The proposed framework has been applied on each frame in
the test set. Some detection results for reference are presented
in Figure 6.
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Fig. 5. Log average miss rates for pedestrians and cars

As future work we plan to evaluate the proposed framework
based on the distance of the objects with respect to the ego-
vehicle (that is objects that are smaller - far, medium objects
and objects close to the car - large). A particular interest for
future work can be given to occluded objects.

V. CONCLUSION

The paper presents a framework for detecting objects in
infrared images. We study the behaviour of two different object
detection architectures that have a common backbone, namely
Yolo [1] and Yolov3-spp. We describe the actions taken for
fine tuning these network architectures in order to work with
infrared images.

For training and testing we have used a benchmark dataset
[3] that contains night and day image sequences with rep-
resentative objects of urban traffic. The evaluation based on
performance and log average miss rate shows that the pro-
posed topology has very good results, featuring an increased
accuracy with respect to the reported state of the art.



predictions predictions

predictions

predictions

Fig. 6. Sample detection results

As future work we plan to combine the infrared with the
visible field in order to check if the two modalities complement
each other and provide increased detection results.
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